

TEST REPORT

Report No. WTZ23F05109707R1T

Applicant Jiangmen City Xinhui HengLong Innovative Housewares

Co., Ltd.

Address Folk Enterprise Industrial Park, Huicheng, Xinhui,

Jiangmen, Guangdong, P.R.China

Manufacturer: Jiangmen City Xinhui HengLong Innovative Housewares

Co., Ltd.

Address...... Folk Enterprise Industrial Park, Huicheng, Xinhui,

Jiangmen, Guangdong, P.R.China

Sample Name: Coffee Machine

Sample Model: HLK-02

Test Requested: In accordance with German Food, Articles of Daily Use

and Feed Code of September 1, 2005(LFGB) Section 30 & 31, BfR recommendation and Regulation (EC) No

1935/2004.

Test Conclusion: Pass (Please refer to next pages for details)

Date of Receipt sample 2023-05-22 & 2023-05-31

Date of Issue : 2023-06-06

Test Result : Refer to next page (s)

Note Selected test(s) as requested by applicant

Prepared By:

Waltek Testing Group (Foshan) Co., Ltd.

Address: No.13-19, 2/F., 2nd Building, Sunlink International Machinery City, Chencun, Shunde District, Foshan, Guangdong, China
Tel:+86-757-23811398 Fax:+86-757-23811381 E-mail:info@waltek.com.cn

Signed for and on behalf of Waltek Testing Group (Foshan) Co., Ltd.

Jessise Liu

Jessise.Liu

Test Results:

1. Extractable Lead, Cadmium and Cobalt Content

At When the	Result (mg/L)	100 (2011)	1 : mails (mails 1)
Test Items	No.1	LOQ (mg/L)	Limit (mg/L)
Extractable Lead	NDIN WITH	0.1	THE 1.5 NOTES
Extractable Cadmium	* ND/EF ND/EF	0.01	0.1
Extractable Cobalt*	ND	0.02	0.05

- 1. Test method: With reference to BS EN 1388-1: 1996 and BS EN 1388-2: 1996, sample preparation in 4% acetic acid at 22±2°C for 24 hours, analysis was performed by ICP-MS.
- 2. "mg/L" = milligram per litre
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected or lower than limit of quantitation
- 5. The specification was quoted from DIN 51032-2017 and ALS Opinion Number 2017/15.
- 6. The testing item marked with "" does not been accredited by CNAS.

2. Council of Europe Resolution CM/Res(2013)9-Specific Migration of Heavy Metal

Test Items	1st+2nd Migr	ration (mg/kg)	1.00 (mg/kg)	Limit (ma/ka)	
restitems	No.2	No.3	LOQ (mg/kg)	Limit (mg/kg)	
Aluminium (Al)	ND	0.4	0.2	35	
Antimony (Sb)	ND	ND	0.02	0.28	
Chromium (Cr)	ND	ND	0.04	1.75	
Cobalt (Co)	ND	ND	0.02	0.14	
Copper (Cu)	ND	ND	0.2	28	
Iron (Fe)	ND	ND	0.4	280	
Manganese (Mn)	ND	ND	0.2	12.6	
Molybdenum (Mo)	ND	ND	0.02	0.84	
Nickel (Ni)	ND	ND	0.02	0.98	
Silver (Ag)	ND	ND	0.02	0.56	
Tin (Sn)	ND	ND	0.2	700	
Vanadium (V)	ND W	ND	0.01	0.07	
Zinc (Zn)	ND ND	ND ND	0.2	35	
Arsenic (As)	ND	ND	0.002	0.014	
Barium (Ba)	ND	ND	0.2	8.4	
Beryllium (Be)	ND	ND	0.01	0.07	
Cadmium (Cd)	ND	ND	0.002	0.035	
Lead (Pb)	ND	ND	0.01	0.07	
Lithium (Li)	ND	ND	0.01	0.336	
Mercury (Hg)	ND	ND	0.002	0.021	
Thallium (TI)	ND	ND	0.0002	0.0007	
Magnesium (Mg)	ND	ND	0.2	LIEK TIEK	
Titanium (Ti)	ND A	ND	0.02	11. 20. 1	

the Atlantic series	3rd Migra	tion (mg/kg)	100 (=== =/1==)	1
Test Items	No.2	No.3	LOQ (mg/kg)	Limit (mg/kg)
Aluminium (Al)	ND W	0.3	0.1	Ø 05
Antimony (Sb)	ND ⁺	ND	0.01	0.04
Chromium (Cr)	ND	ND	0.02	0.25
Cobalt (Co)	ND	ND	0.01	0.02
Copper (Cu)	ND	ND ND	0.1	W 1/4
Iron (Fe)	ND	ND	0.2	40
Manganese (Mn)	ND -	ND	0.1	1.8
Molybdenum (Mo)	ND	ND	0.01	0.12
Nickel (Ni)	ND	ND	0.01	0.14
Silver (Ag)	ND	ND	0.01	0.08
Tin (Sn)	ND ND	ND	0.1	100
Vanadium (V)	ND ND	ND ND	0.005	0.01
Zinc (Zn)	ND	ND	0.1	5 mil 5 mil
Arsenic (As)	ND	ND	0.001	0.002
Barium (Ba)	ND	ND S	0.1	1.2
Beryllium (Be)	ND	ND	0.005	0.01
Cadmium (Cd)	ND	ND	0.001	0.005
Lead (Pb)	ND	ND -	0.005	0.01
Lithium (Li)	ND	ND SIL	0.005	0.048
Mercury (Hg)	ND	ND T	0.001	0.003
Thallium (TI)	ND W	ND	0.0001	0.0001
Magnesium (Mg)	⊢ ND	ND LT	0.1	711, 71,
Titanium (Ti)	ND	ND	0.01	NITER OFFICE

- 1. Test Method: With reference to BS EN 13130-1: 2004, analysis was performed by ICP-MS.
- 2. Test Condition and simulant: Sample(s) were migrated with artificial tap water at 100°C for 1 hour.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. "--" = Not regulated
- 7. The specification was quoted from Technical Guide on Metals and alloys used in food contact materials of Council of Europe Resolution CM/Res(2013)9.

3. Overall Migration Test

ie write with	Mur. Mur. Mu.		esult (mg/dn	1 ²)	antifek whi	IET WITTE WALL
Food Simulant	Test Condition	No.4			LOQ	Limit (mg/dm²)
THE TITES O	TEK MATEK MALTE	1 st Migration	2 nd Migration	3 rd Migration	(mg/dm ²)	WALL STEEK O
20% Ethanol	100°C for 1 hour	3.0	ND	ND	3.0	3 rd Migration:10, 3 rd <2 nd <1 st

it the till	ALTEK MITEK	LIFE WAR	esult (mg/dm	n ²)	70 V	at the state
Food Simulant	Test Condition	et set	No.5	LOQ	Limit (mg/dm²)	
Whitek Whiteh	nite white wh	1 st Migration	2 nd Migration	3 rd Migration	(mg/dm ²)	WALTER WALTER
20% Ethanol	100°C for 1 hour	ND	ND	ND	3.0	3 rd Migration:10, 3 rd <2 nd <1 st

in min mun	Result (mg/dm²)			WALLEY WA	in Mrs. Mrs.	
Food Simulant	Test Condition	The Marie	No.6			Limit (mg/dm²)
41, 2,		1 st	2 nd	3 rd	(mg/dm ²)	20, 20,
LITER CLIFE	to the	Migration	Migration Migration Migration		TEX-	LIFE STEEL
20% Ethanol	100°C for 1 hour	ND	ND	ND	3.0	3 rd Migration:10, 3 rd <2 nd <1 st

- 1. Test method: With reference to BS EN 1186-1: 2002, BS EN 1186-3: 2022
- 2. "mg/dm²" = milligram per square decimetre
- 3. "°C" = Celsius degree
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752, (EU) 2019/37 and (EU) 2020/1245.

4. Specific Migration of heavy metal

	21. 21.	Result(mg/kg)	LET JEST	NITE OF IN	White while	
Test Items	TEX STEX IN	No.4		LOQ (mg/kg)	Limit (mg/k	(g)
	1 st Migration	2 nd Migration	3 rd Migration	(mg/kg)	WALLE WALL	
Nickel (Ni)	ND	ND ND	ND	0.01	3 rd Migration: 3 rd <2 nd <1	st
Aluminium (Al)	ND TO	ND NOTE NO	ND	0.1	3 rd Migratio 3 rd <2 nd <1	
Barium (Ba)	ND	ND	ND	0.1	3 rd Migratio 3 rd <2 nd <1	
Cobalt (Co)	ND	ND	ND	0.01	3 rd Migration: 3 rd <2 nd <1	
Copper (Cu)	ND	ND ND	IND WILL	0.1	3 rd Migratio 3 rd <2 nd <1	
Iron (Fe)	ND	ND TO	unit ND unit	0.1	3 rd Migration 3 rd <2 nd <1	
Lithium (Li)	ND	ND ND	ND TEL	0.01	3 rd Migration:0.6 3 rd <2 nd <1 st	
Manganese (Mn)	ND	ND	ND T	0.01	3 rd Migration:0.6 3 rd <2 nd <1 st	
Zinc (Zn)	ND	ND	ND	0.1	3 rd Migration:5 3 rd <2 nd <1 st	
Antimony (Sb)	ND	ND	ND THE	0.01	3 rd Migration: 3 rd <2 nd <1	
Arsenic (As)	ND	ND	ND	0.01	Not detect	ed
Cadmium (Cd)	ND	ND	ND	0.002	Not detect	ed
Chromium (Cr)	ND	ND	ND	0.01	Not detect	ed 👉
Mercury (Hg)	ND	ND	ND	0.01	Not detect	ed
Lead (Pb)	ND	ND	ND	0.01	Not detect	ed
Europeum (Eu)	ND TEL	unit ND united	ND No.	0.02	3 rd Migration:0.05 3 rd <2 nd <1 st	est ni
Gadolinium (Gd)	ND ND	ND	ND	0.02	3 rd Migration:0.05 3 rd <2 nd <1 st	Sum<
Lanthanum (La)	ND ND	ND	⊬ ND	0.02	3 rd Migration:0.05 3 rd <2 nd <1 st	0.05
Terbium (Tb)	WILL ND BY	MALTER ND LIFE	ND NIE	0.02	3 rd Migration:0.05 3 rd <2 nd <1 st	

in will will !	in m	Result(mg/kg)	Let Jet	Little W	ER JULIE WILL	Mer
Test Items	LIEN SLIEN IN	No.5	Ver. 200. 1	LOQ (mg/kg)	Limit (mg/k	(g)
Murice Murice Mu	1 st Migration	2 nd Migration	3 rd Migration	(ilig/kg)	WALTE WALL	
Nickel (Ni)	ND ND	ND ND	ND	0.01	3 rd Migration:0.02, 3 rd <2 nd <1 st	
Aluminium (Al)	ND STOR	ND NET	ND	0.1	3 rd Migratio 3 rd <2 nd <1	st
Barium (Ba)	ND	ND TE	ND	0.1	3 rd Migratio 3 rd <2 nd <1	n:1 st
Cobalt (Co)	ND	ND	ND	0.01	3 rd Migration: 3 rd <2 nd <1	
Copper (Cu)	ND	ND ND	ND OF	0.1	3 rd Migratio 3 rd <2 nd <1	
Iron (Fe)	ND	ND TEX	and ND nutte	0.1	3 rd Migration 3 rd <2 nd <1	
Lithium (Li)	ND	ND	ND THE	0.01	3 rd Migration:0.6 3 rd <2 nd <1 st	
Manganese (Mn)	ND	ND	ND*	0.01	3 rd Migration 3 rd <2 nd <1	
Zinc (Zn)	ND	ND	ND	0.1	3 rd Migratio 3 rd <2 nd <1	
Antimony (Sb)	ND ND	ND	ND TO	0.01	3 rd Migration: 3 rd <2 nd <1	0.04 st
Arsenic (As)	ND	ND	ND	0.01	Not detect	ed
Cadmium (Cd)	ND	ND	ND	0.002	Not detect	ed
Chromium (Cr)	ND	ND	ND	0.01	Not detect	ed
Mercury (Hg)	ND	ND	ND	0.01	Not detect	ed
Lead (Pb)	ND	ND	ND	0.01	Not detect	ed
Europeum (Eu)	ND FEE	WALTE ND WALTER	ND.	0.02	3 rd Migration:0.05 3 rd <2 nd <1 st	
Gadolinium (Gd)	ND ND	ND	ND	0.02	3 rd Migration:0.05 3 rd <2 nd <1 st	Sum<
Lanthanum (La)	ND W	ND	ND	0.02	3 rd Migration:0.05 3 rd <2 nd <1 st	0.05
Terbium (Tb)	ND IN	WALLE ND TEEK	ND STATE	0.02	3 rd Migration:0.05 3 rd <2 nd <1 st	

in multiplication	in m	Result(mg/kg)	ret set	NITER IN	ER NUTE WILL	MULL
Test Items	LIEN SLIEN IN	No.6	Ver. 200. 1	LOQ (mg/kg)	Limit (mg/k	(g)
	1 st Migration	2 nd Migration	3 rd Migration	(ilig/kg)	WALTE WALL	
Nickel (Ni)	ND ND	ND ND	ND	0.01	3 rd Migration:0.02, 3 rd <2 nd <1 st	
Aluminium (Al)	ND STOR	ND NET	ND	0.1	3 rd Migratio 3 rd <2 nd <1	st
Barium (Ba)	ND	ND	ND	0.1	3 rd Migratio 3 rd <2 nd <1	n:1
Cobalt (Co)	ND	ND	ND	0.01	3 rd Migration: 3 rd <2 nd <1	
Copper (Cu)	ND	ND W	ND	0.1	3 rd Migratio 3 rd <2 nd <1	
Iron (Fe)	ND	ND TEX	ND	0.1	3 rd Migration 3 rd <2 nd <1	
Lithium (Li)	ND	ND ND	ND	0.01	3 rd Migration:0.6 3 rd <2 nd <1 st	
Manganese (Mn)	ND	ND	ND	0.01	3 rd Migration 3 rd <2 nd <1	
Zinc (Zn)	ND	ND	ND	0.1	3 rd Migratio 3 rd <2 nd <1	
Antimony (Sb)	ND ND	ND	ND TO	0.01	3 rd Migration: 3 rd <2 nd <1	0.04 st
Arsenic (As)	ND	ND	ND	0.01	Not detect	ed
Cadmium (Cd)	ND	ND	ND	0.002	Not detect	ed
Chromium (Cr)	ND	ND	ND	0.01	Not detect	ed
Mercury (Hg)	ND	ND	ND	0.01	Not detect	ed
Lead (Pb)	ND	ND	WD W	0.01	Not detect	ed
Europeum (Eu)	ND THE	MALLE ND MALLE	ND ND	0.02	3 rd Migration:0.05 3 rd <2 nd <1 st	
Gadolinium (Gd)	ND N	ND	ND	0.02	3 rd Migration:0.05 3 rd <2 nd <1 st	Sum<
Lanthanum (La)	ND W	ND	ND	0.02	3 rd Migration:0.05 3 rd <2 nd <1 st	0.05
Terbium (Tb)	ND	WALLE ND TEE	ND STEET	0.02	3 rd Migration:0.05 3 rd <2 nd <1 st	

Note:

- 1. Test Method: With reference to BS EN 13130-1: 2004, sample preparation in 3% acetic acid at 100°C for 1 hour, analysis was performed by ICP-MS.
- 2. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected or lower than limit of quantitation
- 5. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752 and (EU) 2020/1245.

5. Specific Migration of Primary Aromatic Amines

or opcome ungration or i im		40	- 1 d		
Test Item	White	Result (mg/kg)	t it de	TEX STEX
	TEX	No.4	LOQ (mg/kg)	Limit (mg/kg)	
multer multer multi-mult	1 st Migration	2 nd Migration	3 rd Migration	WALTER WALTER	Intitle White o
Migration of Primary aromatic amines	ND	ND	ND ND	0.01	Not detected

ant me m. m.		Result (mg/kg	ER WALL WILL	Limit (mg/kg)	
Test Item	mr. m	No.5	LOQ (mg/kg)		
The state of the s	1 st	2 nd	3 rd	An An	71. 74.
	Migration	Migration	Migration	TEL	OLITER WALTER
Migration of Primary aromatic amines	ND	ND	ND	0.01	Not detected

Test Item	WALL	Result (mg/kg)	at the the	t STEP NITE
	LIEK AN	No.6	LOQ (mg/kg)	Limit (mg/kg)	
	1 st Migration	2 nd Migration	3 rd Migration	WALTER WALTER	MALIE MALIE
Migration of Primary aromatic amines	ND	ND	ND T	0.01	Not detected

- 1. Test Method: With reference to § 64 LFGB L No. 00.00-6, analysis was performed by UV-visible Spectrometer.
- 2. Test Condition and simulant: 3% acetic acid at 100°C for 1 hour.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752 and (EU) 2020/1245.

6. Specific Migration of Primary Aromatic Amines (single substance)*

6. Specific Migration of Prim	The .	i	EL WILL WILL THE			
Test Items	LIEN .	No.4			LOQ	Limit
	CAS No.	1 st Migratio n	2 nd Migration	3 rd Migration	(mg/kg)	Limit (mg/kg)
2-methoxyaniline	90-04-0	ND	ND	ND	0.002	Not Detected
4,4'-Diaminobiphenyl	92-87-5	ND	ND +	ND	0.002	Not Detected
4,4'-Methylen-bis- (2-chloroaniline)	101-14-4	ND	ND	ND	0.002	Not Detected
4,4'-Diaminodiphenylmethane	101-77-9	o ND o	ND	ND	0.002	Not Detected
4,4'-Oxydianiline	101-80-4	ND	ND	ND -	0.002	Not Detected
4-chloroaniline	106-47-8	ND	ND N	ND	0.002	Not Detected
3,3'-Dimethoxybenzidine	119-90-4	ND	ND	ND	0.002	Not Detected
3,3'-Dimethylbenzidine	119-93-7	ND	ND	ND	0.002	Not Detected
2-Methoxy-5-methylaniline	120-71-8	ND	ND	ND	0.002	Not Detected
2,4,5 – Trimethylaniline	137-17-7	ND	ND	ND	0.002	Not Detected
4,4'-Thiodianiline	139-65-1	ND	ND	ND (0.002	Not Detected
4-aminoazobenzene	60-09-3	ND	ND W	ND	0.002	Not Detected
2,4-diaminoanisol	615-05-4	ND	ND	ND ND	0.002	Not Detected
4,4'-diamino-3,3'- dimethyldiphenylmethane	838-88-0	ND	ND	ND	0.002	Not Detected
2-Naphthylamine	91-59-8	ND	ND	ND V	0.002	Not Detected
3,3'-Dichlorobenzidine	91-94-1	ND	ND	ND	0.002	Not Detected
4-Aminobiphenyl	92-67-1	ND	ND	ND	0.002	Not Detected
2-methylaniline	95-53-4	ND	ND	ND O	0.002	Not Detected
4-chloro-o-Toluidine	95-69-2	ND	an ND an	ND	0.002	Not Detected
2,4-Toluylendiamine	95-80-7	ND	ND	ND	0.002	Not Detected
2,4-Aminoazotoluene	97-56-3	ND	ND	ND	0.002	Not Detected
2-Amino-4-nitrotoluene	99-55-8	ND	, ND	ND	0.002	Not Detected
2,4-Xylidin	95-68-1	ND N	ND	ND	0.002	Not Detected
2,6-Xylidin	87-62-7	ND	ND	ND S	0.002	Not Detected
1, 3 - phenylene diamine	108-45-2	ND	JUND J	ND	0.002	Not Detected

ist while while while whi	110	ı	Result(mg/kg	g) 🔑 🕔	EK OLIEN	MULLE MULL
at at at a	LIEN .	TER WALL	No.5	11. 14	LOQ	
Test Items	CAS No.	1 st Migratio n	2 nd Migration	3 rd Migration	(mg/kg)	Limit (mg/kg)
2-methoxyaniline	90-04-0	ND	ND	ND	0.002	Not Detected
4,4'-Diaminobiphenyl	92-87-5	ND	ND +	ND	0.002	Not Detected
4,4'-Methylen-bis- (2-chloroaniline)	101-14-4	ND	ND	ND	0.002	Not Detected
4,4'-Diaminodiphenylmethane	101-77-9	o ND o	ND	ND	0.002	Not Detected
4,4'-Oxydianiline	101-80-4	ND	ND	ND -	0.002	Not Detected
4-chloroaniline	106-47-8	ND	ND N	ND	0.002	Not Detected
3,3'-Dimethoxybenzidine	119-90-4	ND	ND	ND	0.002	Not Detected
3,3'-Dimethylbenzidine	119-93-7	ND	ND	ND	0.002	Not Detected
2-Methoxy-5-methylaniline	120-71-8	ND	ND	ND	0.002	Not Detected
2,4,5 – Trimethylaniline	137-17-7	ND.	ND	ND	0.002	Not Detected
4,4'-Thiodianiline	139-65-1	ND	ND	ND (0.002	Not Detected
4-aminoazobenzene	60-09-3	ND	ND W	ND	0.002	Not Detected
2,4-diaminoanisol	615-05-4	ND	ND	ND	0.002	Not Detected
4,4'-diamino-3,3'- dimethyldiphenylmethane	838-88-0	ND	ND	ND	0.002	Not Detected
2-Naphthylamine	91-59-8	ND	ND	ND V	0.002	Not Detected
3,3'-Dichlorobenzidine	91-94-1	ND	ND	ND	0.002	Not Detected
4-Aminobiphenyl	92-67-1	ND.	ND	ND	0.002	Not Detected
2-methylaniline	95-53-4	ND	ND	ND O	0.002	Not Detected
4-chloro-o-Toluidine	95-69-2	ND	ND M	ND	0.002	Not Detected
2,4-Toluylendiamine	95-80-7	ND	ND	ND.	0.002	Not Detected
2,4-Aminoazotoluene	97-56-3	ND	ND	ND	0.002	Not Detected
2-Amino-4-nitrotoluene	99-55-8	ND	, ND	ND	0.002	Not Detected
2,4-Xylidin	95-68-1	ND N	ND	ND	0.002	Not Detected
2,6-Xylidin	87-62-7	ND	ND	ND	0.002	Not Detected
1, 3 - phenylene diamine	108-45-2	ND	JUND J	ND	0.002	Not Detected

E WILL MUT MUT MUT MUT	70.	Result(mg/kg)			EK WITE	WILL WILL
Test Items	- LIEN C	No.6			LOQ	Limit
	CAS No.	1 st Migratio n	2 nd Migration	3 rd Migration	(mg/kg)	(mg/kg)
2-methoxyaniline	90-04-0	ND	ND	ND	0.002	Not Detected
4,4'-Diaminobiphenyl	92-87-5	ND	ND	ND	0.002	Not Detected
4,4'-Methylen-bis- (2-chloroaniline)	101-14-4	ND	ND	ND	0.002	Not Detected
4,4'-Diaminodiphenylmethane	101-77-9	ND S	ND	ND	0.002	Not Detected
4,4'-Oxydianiline	101-80-4	ND	ND	ND -	0.002	Not Detected
4-chloroaniline	106-47-8	ND	ND N	ND	0.002	Not Detected
3,3'-Dimethoxybenzidine	119-90-4	ND	ND	ND	0.002	Not Detected
3,3'-Dimethylbenzidine	119-93-7	ND	ND	ND	0.002	Not Detected
2-Methoxy-5-methylaniline	120-71-8	ND	ND	ND	0.002	Not Detected
2,4,5 – Trimethylaniline	137-17-7	ND O	ND	ND	0.002	Not Detected
4,4'-Thiodianiline	139-65-1	ND	ND	ND (0.002	Not Detected
4-aminoazobenzene	60-09-3	ND	ND 4	ND	0.002	Not Detected
2,4-diaminoanisol	615-05-4	ND	ND	ND /	0.002	Not Detected
4,4'-diamino-3,3'- dimethyldiphenylmethane	838-88-0	ND	ND	ND	0.002	Not Detected
2-Naphthylamine	91-59-8	ND	ND	ND W	0.002	Not Detected
3,3'-Dichlorobenzidine	91-94-1	ND	ND	ND	0.002	Not Detected
4-Aminobiphenyl	92-67-1	ND	ND	ND	0.002	Not Detected
2-methylaniline	95-53-4	ND	ND	ND O	0.002	Not Detected
4-chloro-o-Toluidine	95-69-2	ND	an ND an	ND	0.002	Not Detected
2,4-Toluylendiamine	95-80-7	ND	ND	ND	0.002	Not Detected
2,4-Aminoazotoluene	97-56-3	ND	ND	ND	0.002	Not Detected
2-Amino-4-nitrotoluene	99-55-8	ND	, ND	ND	0.002	Not Detected
2,4-Xylidin	95-68-1	ND ND	ND	ND ND	0.002	Not Detected
2,6-Xylidin	87-62-7	ND	ND	ND S	0.002	Not Detected
1, 3 - phenylene diamine	108-45-2	ND	JUND J	ND	0.002	Not Detected

Note:

- 1. Test Method: With reference to EN 13130-1:2004, analysis was performed by LC-MS-MS.
- 2. Test Condition and simulant: 3% acetic acid at 100°C for 1 hour.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2020/1245.
- 7. The testing item marked with '*' does not been accredited by CNAS.

7. Peroxide Value Test*

ek stek estek and	Re	esult	at the state of the
Test Item	No.4	No.5	white we Limit with white
Peroxide Value	Absent	Absent	Absent

Note:

- 1. Test method: With reference to 58th Communication on the testing of plastics, Bundesgesundheitsblatt 40 (1997) 412.
- 2. The specification was quoted from BfR recommendation III.
- 3. The testing item marked with '*' does not been accredited by CNAS.

Test Item	Result	Marie Walie	
	No.6	Limit	
Peroxide Value	Absent	Absent	

Note:

- 1. Test method: With reference to European Pharmacopeia (2005) ANNEX X F, Clause 2.5.5, method A.
- 2. The specification was quoted from BfR recommendation XVII.
- 3. The testing item marked with '*' does not been accredited by CNAS.

Test Item	Result nutre multe	Limit White White	
	No.7		
Peroxide Value	Absent	Absent	

- 1. Test method: With reference to 58th Communication on the testing of plastics, Bundesgesundheitsblatt 40 (1997) 412
- 2. The specification was quoted from BfR recommendation XV.
- 3. The testing item marked with '*' does not been accredited by CNAS.

8. Specific Metal Content Test (Chromium, Vanadium, Zirconium, Hafnium)*

Test Items	Result	(mg/kg)	1.00 ((1)	
	No.4	No.5	LOQ (mg/kg)	Limit (mg/kg)
Chromium (Cr)	ND STORE	ND ND	5	10
Vanadium (V)	ND	ND ND	5	20
Zirconium (Zr)	MUT ND MU	ND	5,0	100
Hafnium (Hf)	ND ND	ND	5	100

Note:

- 1. Test method: Acid digestion, analysis was performed by ICP-MS.
- 2. "mg/kg" = milligram per kilogram
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected or lower than limit of quantitation
- 5. The specification was quoted from BfR recommendation III.
- 6. The testing item marked with '*' does not been accredited by CNAS.

9. Polynuclear aromatic hydrocarbons(PAHs)

Toot Itom(a)	LOQ	Limit	Results (mg/kg)			
Test Item(s)	(mg/kg)	(mg/kg)	No.4	No.5	No.6	No.7
Naphthalene (Nap)	0.2	³ 1	ND	ND	ND (ND
Phenanthrene (PA)*	0.2	WILLE N	ND	ND O	ND	ND
Anthracene (Ant)*	0.2	// <1 /	ND	ND	ND	ND
Fluoranthene (FLT)*	0.2	Sum	ND	ND	ND	ND
Pyrene (Pyr)*	0.2	EX LIEX	ND	ND	ND J	ND
Benzo[a] anthracene (BaA)	0.2	0.2	ND	ND	ND	ND
Chrysene (CHR)	0.2	0.2	ND	ND	ND	ND
Benzo[b]fluoranthene (BbF)	0.2	0.2	↓ ND →	ND	ND	ND
Benzo[k]fluoranthene (BkF)	0.2	0.2	ND	ND	ND	ND
Benzo[a]pyrene (BaP)	0.2	0.2	ND	ND	ND	ND
Indeno[1,2,3-cd]pyrene (IND)	0.2	0.2	ND	ND	ND	ND
Dibenzo[a,h]anthracene (DBA)	0.2	0.2	ND	ND	ND	ND
Benzo[g,h,i]perylene (BghiP)	0.2	0.2	ND	ND	ND	ND
Benzo[j]fluoranthene	0.2	0.2	ND	ND	ND	ND
Benzo[e]Pyrene	0.2	0.2	ND	ND	ND	ND
Sum of 4 marked PAHs*	11/2 11	1.01	ND	ND	ND	ND
Sum of 15 listed PAHs		Et 1ster	ND	ND	ND	ND

Note:

- 1. Test method: With reference to AFPS GS 2019:01 PAK, analysis was performed by GC-MS.
- 2. "mg/kg" = milligram per kilogram
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected or lower than limit of quantitation

10. Visible Color Migration*

Food Simulant	TEX SIEK	Re	Al imit		
Food Simulant	No.4	No.5	No.6	No.7	Limit
20% ethanol	Negative	Negative	Negative	Negative	Negative

Note:

- 1. The specification was quoted from BfR recommendation IX.
- 2. Negative = No color release observed, Positive = Color release observed
- 3. The testing item marked with '*' does not been accredited by CNAS.

11. Specific Metal Content test (Lead, Zinc, Manganese, Lithium, Cobalt, Titanium, Antimony)*

iet mire thire was	Result (mg/kg)	100 (22 2 (12 2)	Limit (as office)
Test Items	No.6	LOQ (mg/kg)	Limit (mg/kg)
Lead (Pb)	ND	TEX STATES	40
Zinc (Zn)	July 7 1	5	80
Manganese (Mn)	44 7 7 STEE S	5, 1	140
Lithium (Li)	ND	5	130
Cobalt (Co)	ND	Jun 15 Jun	125
Titanium (Ti)	ND	5 TELL STEEL	120
Antimony (Sb)	ND	5	350

- 1. Test method: Acid digestion, analysis was performed by ICP-MS.
- 2. "mg/kg" = milligram per kilogram
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected or lower than limit of quantitation
- 5. The specification was quoted from BfR recommendation XVII.
- 6. The testing item marked with '*' does not been accredited by CNAS.

12. Specific Migration of Antimony

in Muric Muric And	Alle All	Result (mg/kg)	EK WITEK	Limit (mg/kg)	
Test Items	WALTER WALTER	No.6	LOQ (mg/kg)		
	1 st Migration	2 nd Migration	3 rd Migration	The San	W. 2 3%
Antimony (Sb)	ND	ND	ND	0.01	3 rd Migration:0.04, 3 rd <2 nd <1 st

Note:

- 1. Test Method: With reference to EN 13130-1: 2004, sample preparation in 3% acetic acid at 100°C for 1 hour, analysis was performed by ICP-MS.
- 2. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected or lower than limit of quantitation
- 5. The specification was quoted from (EU) No 10/2011.

13. Extractable Components Test

Food Cimulant	Took Condition	Result (%)	1.00 (%)	Limit (0/)	
Food Simulant	Test Condition	No.7	LOQ (%)	Limit (%)	
Distilled Water	Reflux for 5 hours	ND	0.1	0.5	
3% Acetic Acid	Reflux for 5 hours	ND	0.1	0.5	
10% Ethanol	Reflux for 5 hours	ND S	0.1	0.5	

Note:

- 1. Test Method: With reference to 61st Communication on testing of plastics in Bundesge sundheitsbl 46 (2003) 362.
- 2. "%" = percentage by weight
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected or lower than limit of quantitation
- 5. The specification was quoted from BfR recommendation XV.

14. Volatile Organic Compounds*

Test Item	Test Condition	Result (%)	LOQ (%)	Limit (%)
Volatile Organic compounds	200°C for 4 hours	0.26	0.05	0.5

- 1. Test method: With reference to Bestimmung von flüchtigen Verbindungen in Bedarfsgegenständen aus Silikon.
- 2. "%" = percentage by weight
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected or lower than limit of quantitation
- 5. The specification was quoted from BfR recommendation XV.
- 6. The testing item marked with '*' does not been accredited by CNAS.

15. Organotin Compounds Content Test

Total Maria	Result (mg/kg)	100 (===(1==)		
Test Items	No.7	LOQ (mg/kg)	Limit (mg/kg)	
Monobutyltin (MBT)	Absent	0.05	Absent	
Dibutyltin (DBT)	Absent	0.05	Absent	
Tributyltin (TBT)	Absent	0.05	Absent	
Tetrabutyltin (TeBT)	Absent	0.05	Absent	
Monooctyltin (MOT)	Absent	0.05	Absent	
Diotyltin (DOT)	Absent	0.05	Absent	
Triphenyltin (TPhT)	Absent	0.05	Absent	

Note:

- 1. Test method: With reference to DIN EN ISO 17353: 2005, analysis was performed by GC-MS.
- 2. "mg/kg" = milligram per kilogram
- 3. LOQ = Limit of quantitation

16. Platinum(Pt) content*

Test Item	Result (mg/kg)	1.00 (mg/kg)	Limit (ma/ka)
	No.7	LOQ (mg/kg)	Limit (mg/kg)
Platinum(Pt)	ND ND	20	50

- 1. Test method: Acid digestion, analysis was performed by ICP-MS.
- 2. "mg/kg" = milligram per kilogram
- 3. ND = Not Detected or lower than limit of quantitation
- 4. The specification was quoted from BfR recommendation XV.
- 5. The testing item marked with '*' does not been accredited by CNAS.

17. Sensorial Examination

it with mit and and	Result	- Maximum permissible limit	
Test Items	The submitted sample		
Sensorial examination odour	the article and of white with	2.5	
Sensorial examination taste	0	2.5	

Note:

- 1. Test method: With reference to DIN 10955: 2004.
- 2 Scale:
 - 0 = no discernible deviation
 - 1 = barely discernible deviation
 - 2 = weak deviation
 - 3 = clear deviation
 - 4 = strong deviation

Sample Photo:

Photograph of parts tested:

No.	Photo of testing part	Parts Description	Client Claimed Material
WILLEY TELL WILL WILL WILL WILL WILL WILL WILL W	55 1 5 6 7 8 9 10 11 213 11 5 16 17 16 19 20 21 22 22 22 5 25 25 25 25 25 25 25 25 25 2	Transparent glass	Glass
2 m	3 4 5 6 7 8	Silvery metal	Stainless steel
TIEN WAR	3 4 5 6 7 8 9 1 0 11 12-13 14 15 16	Silvery metal	Aluminium
t unit		White plastic	PP* WHITE WHIT

No.	Photo of testing part	Parts Description	Client Claimed Material
WALTE WALTER STEE WALTER	33 4 5 6 7 8 9 10 11 12 13 14 15 16	Transparent plastic	PP LIFE WALTER W
MITTER OF THE PROPERTY OF THE	3-456-78-91011 12-13 1415 16 17 18 1920 21	White plastic	TELL STEEL STEEL STEEL
EK WALTE	3 4 5 6 7 8 9 10 11 2 13 11 5 16 17 18 19 20 21 22 22 22 22 23 22 23 23 23 23 23 23 23	Translucent silicone rubber	Silicone rubber

Remarks

- 1. The results shown in this test report refer only to the sample(s) tested;
- 2. This test report cannot be reproduced, except in full, without prior written permission of the company;
- 3. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver;
- 4. The Applicant name and Address, the sample(s) and sample information was/were provided by the applicant who should be responsible for the authenticity which Waltek hasn't verified;
- 5. If the report is not stamped with the accreditation recognized seal, it will only be used for scientific research, education, and internal quality control activities, and is not used for the purpose of issuing supporting data to the society.

===== End of Report =====